The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 0 X X^3+X^2 X 0 X X^3+X^2 X X X^3 X^3 X X X^2 X^2 0 X X^3+X^2 X^2+X 0 X^2+X X^3+X^2 X^3+X X^3 X^3+X^2+X X^2 X^3+X X^3 X^3+X^2+X X^2 X X^2+X X X^3+X X X^2+X X X^3+X X X^3+X^2+X X^3+X^2+X X X X X X X 0 0 X^3 X^3 X^3 0 0 X^3 X^3 X^3 0 0 0 0 X^3 X^3 0 X^3 X^3 0 X^3 0 0 X^3 X^3 0 X^3 0 X^3 0 X^3 0 generates a code of length 32 over Z2[X]/(X^4) who´s minimum homogenous weight is 32. Homogenous weight enumerator: w(x)=1x^0+253x^32+2x^48 The gray image is a linear code over GF(2) with n=256, k=8 and d=128. As d=128 is an upper bound for linear (256,8,2)-codes, this code is optimal over Z2[X]/(X^4) for dimension 8. This code was found by Heurico 1.16 in 0.015 seconds.